Distinguished Lecture——Irrationality of periods
报告人:唐云清 (加州大学伯克利分校)
时间:2026-01-09 14:00-15:00
地点:智华楼四元厅
报告摘要: Periods are interesting numbers arising from algebraic geometry. Grothendieck’s period conjecture provides predictions on irrationality and transcendence of periods. There have been some systematic studies on certain periods, such as Baker’s theory on linear forms of logarithms of algebraic numbers. However, beyond special cases, we do not know the irrationality of simple-looking periods such as the product of two logs. In this talk, I will discuss the joint work with Calegari and Dimitrov on an irrationality result of certain product of two logs and some other periods. A classical prototype of the method was first used by Apéry to prove the irrationality of zeta(3). The key ingredient is an arithmetic holonomy theorem built upon earlier work by André, Bost, Charles (and others) on arithmetic algebraization theorems via Arakelov theory.
报告人介绍:唐云清,加州大学伯克利分校数学系副教授,主要研究方向为算术几何与数论。2007年至2011年本科就读于色控
,获得学士学位;2016年获得哈佛大学博士学位,师从Mark Kisin教授。先后荣获SASTRA拉马努金奖、斯隆研究奖、AWM微软研究奖,并因在“无界分母猜想”上的突破性工作与合作者共同获得了2026年美国数学会科尔数论奖。受邀在2026年国际数学家大会(ICM)的数论分会场发表演讲。
